布林线算是个常见的技术指标,
它的背后的数学相当优美
先用平均线当中线,
再用标准差 (standard deviation) 来计算上轨线与下轨线。
有点像标准正态分布 (normal distribution)。
背后的数学这里就不解释了
网上多的很,加上也没几个人想看。
大家关心的还是这个策略到底可不可以赚钱,
这篇文章我们来探讨这个策略在马股KLSE指数的表现如何。
我从Yahoo Finance上下载了KLSE指数的历史数据,
要分析数据得先读取这个csv文件。
1 2 3 4 5 6 7 8 9 |
import pandas as pd
KLSE = pd.read_csv('KLSE.csv')
KLSE = KLSE.replace(',','', regex=True)
KLSE['Open'] = KLSE['Open'].astype(float)
KLSE['Close'] = KLSE['Close'].astype(float)
KLSE['Change'] = (KLSE['Close'] - KLSE['Close'].shift(1))/KLSE['Open'] + 1
KLSE.head()
|
Date | Open | High | Low | Close | Adj Close | Volume | Change | |
---|---|---|---|---|---|---|---|---|
0 | 4-Jan-10 | 1272.31 | 1275.75 | 1272.25 | 1275.75 | 1275.75 | 56508200 | NaN |
1 | 5-Jan-10 | 1278.26 | 1290.55 | 1278.26 | 1288.24 | 1288.24 | 136646600 | 1.009771 |
2 | 6-Jan-10 | 1288.86 | 1296.44 | 1288.02 | 1293.17 | 1293.17 | 117740300 | 1.003825 |
3 | 7-Jan-10 | 1293.69 | 1299.70 | 1290.36 | 1291.42 | 1291.42 | 115024400 | 0.998647 |
4 | 8-Jan-10 | 1294.93 | 1295.51 | 1290.86 | 1292.98 | 1292.98 | 74587200 | 1.001205 |
这个策略的规则很简单,
要注意的是我们只Long,不Short,
毕竟在马来西亚卖空还是没那么容易的。
具体规则:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
def simulate(df,n):
import talib
df['UpperBand'], df['MiddleBand'],df['LowerBand'] = talib.BBANDS(df['Close'], timeperiod=n, nbdevup=2, nbdevdn=2, matype=0)
df.dropna(inplace = True)
gold_cross = df[df['Close'] > df['UpperBand']].index
df.loc[gold_cross,'Cross'] = 1
gold_cross = df[df['Close'] < df['LowerBand']].index
df.loc[gold_cross,'Cross'] = 0
df['Cross'].ffill(inplace=True)
df['Buy'] = df['Cross'].diff()
df['Return'] = df['Cross']*df['Change']
def norm(x):
if x == 0:
return 1
else:
return x
df['Return'] = df['Return'].apply(lambda x: norm(x))
df['Nav'] = (df['Return']).cumprod()
df.dropna(inplace=True)
price_in = df.loc[df['Buy'] == 1,'Close'].values
price_out = df.loc[df['Buy'] == -1,'Close'].values
# divide by 252 because generally a year has 252 trading days
num_periods = df.shape[0]/252
rety = ((df['Nav'].iloc[-1] / df['Nav'].iloc[0]) ** (1 / (num_periods - 1)) - 1)*100.0
if len(price_out) > len(price_in):
price_out = price_out[:len(price_in)]
if len(price_in) > len(price_out):
price_in = price_in[:len(price_out)]
VictoryRatio = ((price_out - price_in)>0).mean()*100.0
DD = 1 - df['Nav']/df['Nav'].cummax()
MDD = max(DD)*100.0
return df, round(rety, 2), round(VictoryRatio, 2), round(MDD,2)
|
这要解释也不容易,
还是上图吧!
绿箭头代表收市价升破上轨线,买入
红箭头代表收市价跌破下轨线,卖出 Position
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 |
Demo,_,_,_ = simulate(KLSE.copy(),20)
import matplotlib.pyplot as plt
plt.style.use('seaborn')
# Take a portion of the dataset to visualize,
# Otherwise the plot will be too small
Demo = Demo[500:1000]
ax = Demo['UpperBand'].plot(figsize=(10, 6),alpha=0.7)
Demo['Close'].plot(ax=ax,color='navy')
Demo['LowerBand'].plot(ax=ax,alpha=0.7)
# Buy signal
for p in Demo[Demo['Buy'] == 1].index:
ax.plot(p,Demo['Close'][p],marker='^',color='green',markersize=15)
# Sell signal
for p in Demo[Demo['Buy'] == -1].index:
ax.plot(p,Demo['Close'][p],marker='v',color='red',markersize=15)
plt.show()
|
我们测试3个设置,
分别是
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 |
BBandShort,cagrShort,vrShort,mddShort = simulate(KLSE.copy(),10)
BBandMed,cagrMed,vrMed,mddMed = simulate(KLSE.copy(),20)
BBandLong,cagrLong,vrLong,mddLong = simulate(KLSE.copy(),50)
KLSE['KLSE'] = (KLSE['Change']).cumprod()
ax = BBandShort.plot(x='Date',y='Nav',figsize=(10, 6))
BBandMed['Nav'].plot(ax=ax)
BBandLong['Nav'].plot(ax=ax)
KLSE['KLSE'].plot(ax=ax)
ax.legend(['n= 10','n = 20','n = 50','KLSE (benchmark)']);
ax.set_title('Growth of RM1 Invested')
plt.show()
from prettytable import PrettyTable
t = PrettyTable(['Strategy', 'CAGR', 'Win Rate', 'Max Drawdown'])
t.add_row(['布林线 (10)', cagrShort,vrShort,mddShort])
t.add_row(['布林线 (20)', cagrMed,vrMed,mddMed])
t.add_row(['布林线 (50)', cagrLong,vrLong,mddLong])
print(t)
|
+-------------+-------+----------+--------------+
| Strategy | CAGR | Win Rate | Max Drawdown |
+-------------+-------+----------+--------------+
| 布林线 (10) | 13.19 | 50.0 | 5.57 |
| 布林线 (20) | 7.94 | 46.88 | 5.57 |
| 布林线 (50) | 3.3 | 35.71 | 7.91 |
+-------------+-------+----------+--------------+
从数据来看,胜率有点低,最高也只是50%
可是它看起来可以让交易者避免大规模下跌,参与升势。
而且大部分也都跑赢KLSE指数。
较长期的设置的表现较差强人意,
看起来布林线应该适合短期交易而已。
想要自己测试的读者可以从Yahoo Finance下载想要的个股数据来分析看看。
纯属分享,无买卖建议
Created by klsequant | Mar 10, 2022
Created by klsequant | Feb 06, 2022